
International Journal of Computational Intelligence and Informatics,

ISSN: 2349 - 6363

A Novel Approach to Simplifying Boolean
Functions of Any Number of Variables

T Mathialakan
Department of Physical

Vavuniya Campus, University of Jaffna,
Jaffna, Sri Lanka

mathialakan@mail.vau.jfn.ac.lk

Abstract- Expressions of Boolean functions in the minimal form
hardware designs. There are several ways such as K
McCluskey to simplify the Boolean expressions.
the limitation on number of variables
programming perfectly. A new method has been introduced
functions without considering the minterms. This method deals with the sum of product (SO
expressions – it takes the input as SOP and gives the ou
novel way and represented in a row of a table where the columns correspond to the variables involved in
the expressions. The encoded products are taken pair by pair and an appropriate rule of the set of fou
sound rules is applied to simplify. The encoding is used to select the most promising pairs to apply the
rules in a systematic way. This process is continued until no further pair selection is possible.
idea makes possible that the expression
complexity of the simplification process though it needs a little more work in encoding and in selecting the
most promising products. Also, this idea can be easily programmed as the algorithm is v
The implementation of the algorithm in C# and testing proves that the idea works well efficiently though
looks simple. In fact, no similar idea is reported to our knowledge

Keywords- Boolean function, Boolean expression, K

Boolean expression expressed the logical functions in terms of
functions and logical variables are in the binary form. Any logical variable can
0 and 1, and any logical variable (
complemented form (�′). Minimisation of Boolean function is
with considering the number of gates used, physical space covered and
of minimisation process such as K-
Further, these methods are found to be dependent on
consuming even converting the given expression into a sum of

For example, the Boolean expression
��� � ���� � ����� � 	���	 � 	���
whereas in the method proposed in this paper handles the expression in the given form by way of introducing
encryption by giving 1 for a variable for its unprime

Hence, an algorithm is designed for simplification of Boolean expression without obtaining minterms to
simplify in a systematic way and thus to implement in a high

The expression is given as a sum of products, not necessarily in minterms, from which the products are
extracted and represented in its encryption form in a table row by row.

A new technique is learned by analysing the Ideal theorems and proper rules of Boolean
product terms in the encrypted form are compared pair by pair and reduced into simpler form as much as
possible.

For example, consider the input expression
�, and	�� are identifying the occurrences of three variables A,
records respectively: [0, 1, 1

[1, -1, -1

[1, 1, -1

International Journal of Computational Intelligence and Informatics, Vol. 2: No. 2, July - September 2012

A Novel Approach to Simplifying Boolean
Functions of Any Number of Variables

Mathialakan
 Science

University of Jaffna,
Sri Lanka

mathialakan@mail.vau.jfn.ac.lk

Dr S Mahesan
Department of Computer Science

Faculty of Science, University of Jaffna,
Jaffna, Sri Lanka

mahesans@jfn.ac.lk

functions in the minimal form would be essential for many needs such as
several ways such as K-map technique and tabular method of Quine

McCluskey to simplify the Boolean expressions. These currently used techniques have drawbacks
the limitation on number of variables and dependence on ‘minterms’. Hence, these methods
programming perfectly. A new method has been introduced in this paper to minimise the Boolean
functions without considering the minterms. This method deals with the sum of product (SO

it takes the input as SOP and gives the output as SOP. Each product in SOP is encoded in a
novel way and represented in a row of a table where the columns correspond to the variables involved in
the expressions. The encoded products are taken pair by pair and an appropriate rule of the set of fou
sound rules is applied to simplify. The encoding is used to select the most promising pairs to apply the
rules in a systematic way. This process is continued until no further pair selection is possible.

makes possible that the expression can contain any number of variables without increasing the
simplification process though it needs a little more work in encoding and in selecting the

most promising products. Also, this idea can be easily programmed as the algorithm is v
The implementation of the algorithm in C# and testing proves that the idea works well efficiently though
looks simple. In fact, no similar idea is reported to our knowledge.

Boolean function, Boolean expression, K-map, minterm, sum of product (SOP), tuple.

I. INTRODUCTION

Boolean expression expressed the logical functions in terms of logical variables. Values taken by the logical
logical variables are in the binary form. Any logical variable can have only one of the two values

variable (binary variable) may appear either in its normal form (
. Minimisation of Boolean function is one of the major tasks in digital design process

the number of gates used, physical space covered and power consumption
-Map and Tabular is used with applying of basic axioms

Further, these methods are found to be dependent on minterms of all the variables involved, thus makes it time
consuming even converting the given expression into a sum of minterms.

For example, the Boolean expression	���� � 	�	 � 	�� of three variable has to be converted into
���′ by replacing A by ���	 � 	���� � 	��′�′ and AB by

whereas in the method proposed in this paper handles the expression in the given form by way of introducing
encryption by giving 1 for a variable for its unprimed form and 0 for its primed form and -

Hence, an algorithm is designed for simplification of Boolean expression without obtaining minterms to
simplify in a systematic way and thus to implement in a high-level language.

II. METHODOLOGY

ression is given as a sum of products, not necessarily in minterms, from which the products are
in its encryption form in a table row by row.

A new technique is learned by analysing the Ideal theorems and proper rules of Boolean
product terms in the encrypted form are compared pair by pair and reduced into simpler form as much as

consider the input expression ���� � 	�	 � 	��.From this expression, the
are identifying the occurrences of three variables A, B, C, the products are encrypted into following

1]

1]

1]

September 2012

103

A Novel Approach to Simplifying Boolean
Functions of Any Number of Variables

Dr S Mahesan
Department of Computer Science

ence, University of Jaffna,
Sri Lanka

mahesans@jfn.ac.lk

would be essential for many needs such as
ular method of Quine-

These currently used techniques have drawbacks such as
. Hence, these methods do not adapt

to minimise the Boolean
functions without considering the minterms. This method deals with the sum of product (SOP)

Each product in SOP is encoded in a
novel way and represented in a row of a table where the columns correspond to the variables involved in
the expressions. The encoded products are taken pair by pair and an appropriate rule of the set of four
sound rules is applied to simplify. The encoding is used to select the most promising pairs to apply the
rules in a systematic way. This process is continued until no further pair selection is possible. This novel

can contain any number of variables without increasing the
simplification process though it needs a little more work in encoding and in selecting the

most promising products. Also, this idea can be easily programmed as the algorithm is very systematic.
The implementation of the algorithm in C# and testing proves that the idea works well efficiently though

sum of product (SOP), tuple.

logical variables. Values taken by the logical
have only one of the two values

binary variable) may appear either in its normal form (�) or in its
one of the major tasks in digital design process

power consumption. The traditional way
Map and Tabular is used with applying of basic axioms and theorems. [1]

minterms of all the variables involved, thus makes it time

of three variable has to be converted into���� �
and AB by	���	 � 	���′,

whereas in the method proposed in this paper handles the expression in the given form by way of introducing
-1 for its absence.

Hence, an algorithm is designed for simplification of Boolean expression without obtaining minterms to

ression is given as a sum of products, not necessarily in minterms, from which the products are

A new technique is learned by analysing the Ideal theorems and proper rules of Boolean algebra. The
product terms in the encrypted form are compared pair by pair and reduced into simpler form as much as

From this expression, the product terms �′��,
C, the products are encrypted into following

International Journal of Computational Intelligence and Informatics, Vol. 2: No. 2, July - September 2012

104

The size of a record resulting from the encryption depends on the number of variables involved in the given
expression, each number in a record corresponds to the variables involved: 1 representing the unprimed form, 0
representing primed form and -1 its absence.

The following tabular representation makes this fact clearer:

Record
Variables

A B C

1 0 1 1

2 1 -1 -1

3 1 1 -1

The next step is to introduce a measure called index to each row representing the number of 1s occurred in
that row. [1] The indices for the above example are 2, 1, and 2 respectively. Then, the records are reordered in
the ascending of indices.

The rows are compared in order pair by pair and do reduction/elimination as appropriate and possible by
considering the following identities of two variables:

1. �		 � 	��			 = 		

2. �	 �	��			 = 		� � 		

3. �		 � 	�� 	= 	 �� � 		

4. �	 � 	�	�		 = 		�

5. �	 �	�� 	= 	���

How we apply these rules: Let us see one by one of the above five rules.

Case 1 (Logical adjacency):	�		 � 	�′	 corresponds to two records, namely,

1 1

0 1

In which one column has 1 and 0 while the other column has the same bit 1. In such a case, these two rows
will be replaced by a new row -1, 1 which corresponds to y.

Case 2 (Absorption): �	 + 	�′	 which corresponds to the records

1 -1

0 1

Here one column has 1 and 0 and the other has -1 and 1. In such a case, the bit which diagonally opposite to
-1 will be replaced by -1 resulting in

corresponding to �	 + 		.

Case 3 (Absorption): �		 + 	�′ - this case is similar to case 2, resulting in

-1 1

0 -1

corresponding to �� + 		

Case 4 (Absorption):�	 + 	�	� corresponds to

1 -1 -1

1 d e

d, e can be any encryption number.

In this table, one column has the same bit 1 whereas all the other encryption number is -1 in one row. In such
a case, the row other than the one which has all entries -1 except for that in one column will be removed.

1 -1

-1 1

International Journal of Computational Intelligence and Informatics, Vol. 2: No. 2, July - September 2012

105

 Case 5 (Complement):�	 � 	�′ corresponds to

in which one entry is 1 and the other is 0, resulting in the Boolean value true, and further processing is not
needed.

The above idea can be extended to any number of variables.

A. Algorithm

The records are stored in a matrix �[][], the size of whichis � times �, where � is the number of product
terms and� is the number of variables. The matrix is sorted in the ascending order indices of each record - where
`index' means the number of 1s in the record.

Simplification is performed as follows:

��1	 = 		1

while (�	 − 	1) do

 {

 ��2	 = 	��1	 + 	1		

while (p) do

{

compare row1 and row2

let �10 = number of occurrences such that �[��1,] 	== 	1 and �[��2,] 	== 0 for some j
+ number of occurrences such that �[��1, !] 	== 	0 and �[��2, !] 	== 1 for some k

�1_1 = number of occurrences such that �[��1,] 	== 	1 and �[��2,] 	== −1 for some j

+ number of occurrences such that �[��1, !] == 	0 and �[��2, !] == −1 for some k

�_11 = number of occurrences such that �[��1,] == 	−1 and �[��2,] == 1 for some j

+ number of occurrences such that �[��1, !] == 	−1 and �[��2, !] == 0 for some k

�11 = number of occurrences such that �[��1,] == 	1 and �[��2,] == 1 for some j

+ number of occurrences such that �[��1, !] == 	0 and �[��2, !] == 0 for some k

if (�10	 + 	�1_1	 + 	�_11 is 1 and it occurs in column j)

set �[��1,] = 	−1,

remove row2 (this row2 will not be included after this step)

set ��1	 = 	−1

break inner loop

else if (�10 == 1	&	�1_1	 > 	0	&	�_11 == 0 and it �10 occurs in columnj)

set �[��1,] = 	−1

set ��1	 = 	−1

break inner loop

else if (�10 == 1	&	�1_1 == 0	&	�_11 > 0 and it �10	occurs in columnj)

set �[��1,] = 	−1

set ��1	 = 	−1

break inner loop

1

0

International Journal of Computational Intelligence and Informatics, Vol. 2: No. 2, July - September 2012

106

else if (�10 == 0	&	�1_1 == 0	&	�_11 > 0 and it �10 occurs in columnj)

remove row2

else if (�10 == 0	&	�1_1 > 0	&	�_11 == 0 and it �10 occurs in columnj)

remove row1

}

}

Decrypt the matrix m into final simplified Boolean expression.

Let us consider another example to see how this algorithm works:

The input expression is �	� � 			 � 		�	 � 		��	 � 	�

The matrix �[][] and the index will be as follows corresponding to the five products:

This matrix is sorted in the ascending order of index as follows:

During the process, when record 1 and record 2 are compared, the counts �10, �1_1, �_11 and �11 will be

c10 c1_1 c_11 c11

1 1 0 0

and since �10 == 1	, �1_1 > 0, �_11 == 0,�10 is 1 corresponding to variable y in column 2, and
�[2,1] == −1, so the diagonal of �[2,1], �[1,2] is set to be -1, where row 1 has unprimed x. The resulting
matrix will be

Record
Variables

Index
x y z w

1 1 0 -1 -1 1

2 -1 1 -1 -1 1

3 -1 1 1 -1 2

4 -1 1 1 1 3

5 -1 -1 1 -1 1

Record
Variables

Index
x y z w

1 1 0 -1 -1 1

2 -1 1 -1 -1 1

3 -1 -1 1 -1 1

4 -1 1 1 -1 2

5 -1 1 1 1 3

Record
Variables

x y z w

1 1 -1 -1 -1

2 -1 1 -1 -1

3 -1 -1 1 -1

4 -1 1 1 -1

5 -1 1 1 1

International Journal of Computational Intelligence and Informatics, Vol. 2: No. 2, July - September 2012

107

Then compare records 1 and 3, the corresponding counts are

c10 c1_1 c_11 c11

0 1 1 0

In this case, no action can be taken.

Then compare records 1 and 4, the corresponding counts are
c10 c1_1 c_11 c11

0 1 2 0

In this case also, no action can be taken.

Then compare records 1 and 5, the corresponding counts are

In this case also, no action can be taken.

Then, in the next iteration, records 2 and 3 are compared and the corresponding counts are
c10 c1_1 c_11 c11

0 1 1 0

In this case, there are no action can be applied. Then compare records 2 and 4, the corresponding counts are

c10 c1_1 c_11 c11

0 0 1 1

and since �10 == 0	, �1_1 == 0, and �_11 > 0, the record 4 will be removed. The resulting matrix will be

Then records 2 and 5 are compared and the corresponding counts are

c10 c1_1 c_11 c11

0 0 2 1

and since �10 == 0	, �1_1 == 0, and �_11 > 0, in the similar way of previous step the record 5 gets
removed. The resulting in a new matrix as

Since no more possible comparisons, this method is stopped with the resultant matrix:

The best minimal expression will be: � � 	 � �

c10 c1_1 c_11 c11

0 1 3 0

Record
Variables

x y z w

1 1 -1 -1 -1

2 -1 1 -1 -1

3 -1 -1 1 -1

5 -1 1 1 1

Record
Variables

x y z w

1 1 -1 -1 -1

2 -1 1 -1 -1

3 -1 -1 1 -1

Record
Variables

x y z w

1 1 -1 -1 -1

2 -1 1 -1 -1

3 -1 -1 1 -1

International Journal of Computational Intelligence and Informatics, Vol. 2: No. 2, July - September 2012

108

III. RESULTS AND DISCUSSION

The algorithm is implemented and tested by giving several Boolean expressions of varying complexity. The
simplification resulted in the best minimal form possible

for the expression considered. The examples range from a simple one like � ′	 � 	�		 � 		′ to a complicated
one with several variables like &� 	+ 		 + 	�'� 	+ 	'	 + ℎ�� 	+ 	�)� 	+ 	�)	 + 	*'�+� 	+ 	*'+� 	+ 	*'+	 +
	�'��	 + 	�'�	 + 	���	 +	ℎ�,	 + 	ℎ,	 + 	-��.� 	+ 	.	�	 + 	.	�� 	+ 	.	� 	+ 	�!� 	+ 	�!/� 	+ 	�!/	 + 	���� 	+
	���� 	+ 	�	 + 		 + 	�′�.The corresponding simplified expressions1(true) and 	& + 		 + 	�	 + 	'	 + 	ℎ	 + 	�	 +
	*	 + 	�	 + 	,	 + 	-	 + 	�	 + 	�	 + 	.	 + 	� are shown in Fig. 1 and Fig. 2 respectively – the snapshot of the output
of the program.

The following table shows 10 sample expressions and their reduced form produced by the program:

Expression
Number

of
variables

Time
taken
(ms)

Reduced form
Further

reduction
possible

� ′	 + 	�		 + 		′ 2 0 1 No

� ′	� + 	�		 + 	�′	 3 0 	 No

� ′	�	 +	� ′	� ′ 	+ 	� ′	′�	 + 	�	�	 + 	�	� ′ 	+		′�	 + 		� 4 0 		 + 	� No

'-′� + 	'-′� ′ + 	-�&�	 + 	-�&′ + 	-��′ + 	-� ′ + 	�&′ + 	&�′ + 	�

5 0 '	 + 	-	 + 	�	 + 	&	
+ 	�

No

'-�&′ 	+ 	�&�) ′ 	+ 	�)-'′ 	+ 	'-&	 + 	'-� ′ 	+ 	�&)	 + 	�&�′ 	+ 	�)'	
+ 	�)-′

6 0 '-	 + 	�&	 + 	�) No

'&� 	+ 	&	 + 	-�&+	 + 	-�&�+� 	+ 	+	 +	'��)	 + 	'�)	 + 	'-ℎ,	 +
	'�ℎ,	 + 	-′ℎ,

9 0 '	 + 	-�	 + 	&	 + 	�)	
+ 	+	 + 	ℎ,

No

'�-�&	 +	'�-�� 	+	'�-&� 	+ 	��&�	 +	��&�� 	+	��)+ℎ	 +	��)+ℎ� 	+
	��)+� 	+	+�ℎ, !	 +	+�ℎ 	 +	+�ℎ � 	+	 ,� 	 + 	'-���&!�.	 +
	'-��&!�.	 +	'���&!�.	 + 	�&!�.	 + 	&′!′.

12 15.625 ,� 	 +	��&	 + 	+�ℎ	
+	'�-	 +	��)	 + 	!′.

No

'�	 +	-�/	 + 	��	 +	&�.� 	+ 	�!	 +) � + 	+, + ℎ + '���!� +
'���! + '��	 +	-�/ℎ�,	 +		-�/ℎ�,� + ��& + ��&� 	+	&�.�)� 	 +
	&�.�) 	 +	&�.� � 	+ 	�)!	 + 	�)�!	 +)+, � 	+ 	+, 	 +)�+,	 + 	+, 	 +
) �ℎ� 	+ ℎ

15 15.625
) 	 + 	ℎ	 +	-�/	
+	&�.� 	+ 	'�	 + 	��	
+ 	�!	 + 	,+

No

ℎ,+'��	 + 	ℎ,+'��� 	+ 	ℎ,+'�� 	+ 	ℎ,+�'	 + 	ℎ,'� 	+ 	'	 +	 ,��-�	 +
	,��-��	 +	 ,���� 	+ 	�,/	&�)� 	+ 	�,/	&�)	 + 	�,/	&	 + 	����*� 	+
	���	 + 	���*

18 15.625 ℎ,	 + ,��	 + 	'	
+ 	�,/		 + 	���

No

&� 	+ 		 + 	�'� 	+ 	'	 + 	ℎ�� 	+ 	�)� 	+ 	�)	 + 	*'�+� 	+ 	*'+� 	+
	*'+	 + 	�'��	 + 	�'�	 + 	���	 + 	ℎ�,	 + 	ℎ,	 + 	-��.� 	+ 	.	�	 +
	.	�� 	+ 	.	� 	+ 	�!� 	+ 	�!/� 	+ 	�!/	 + 	���� 	+ 	���� 	+ 	�	 + 		 +
	�′�

21 15.625

&	 + 		 + 	�	 + 	'	
+ 	ℎ	 + 	�	 + 	*	 + 	�	
+ 	,	 + 	-	 + 	�	 + 	.	
+ 	�	 + 	�	 + 	

No

Figure 2. Snapshot of the output for the expression &� 	+ 		 +
	�'� 	+ 	'	 + ℎ�� 	+ 	�)� 	+ 	�)	 + 	*'�+� 	+ 	*'+� 	+ 	*'+	 +
	�'��	 + 	�'�	 +	���	 +	ℎ�,	 + 	ℎ,	 + 	-��.� 	+ 	.	�	 +
	.	�� 	+ 	.	� 	+ 	�!� 	+ 	�!/� 	+ 	�!/	 + 	���� 	+ 	���� 	+
	�	 + 		 + 	�′�

TABLE 1: TEST CASE OF EXPRESSIONS WITH VARIED NUMBER OF VARIABLES, OBTAINED REDUCED FORM
AND TIME TAKEN.

Figure 1. Snapshot of the output for the expression
�′	 + 	�		 + 		′

International Journal of Computational Intelligence and Informatics, Vol. 2: No. 2, July - September 2012

109

REFERENCES

[1] Singh, A.K., Manish Tiwari, and Arun Prakash, Digital Principles Switching Theory. New Delhi: New
age International Publishers, 2006. ch.2,3

[2] Matt Telles, and Kogent Solutions Inc, C\# 2005 Programming, India: Dreamtech Press, 2008.

[3] James, L. Hein. (2004). Discrete Structures, Logic, and Computability, New Delhi: Narosa Publishing
House, 2004, pp.572-581

Dr S Mahesan graduated from University of Jaffna, specialising in Statistics, did M.Sc. in Computing at
Cardiff University of Wales, UK, and then obtained a Ph.D. in Computer Science from University of Wales.
He is interested in range of fields in Computer Science: Theory of Languages, High Performance Computing,
Numerical Computing, Knowledge Representation, Natural Language Processing, Machine Learning, Image
Processing, and Bio Informatics.

T Mathialakan was born in Alaveddy, Jaffna, Sri Lanka. He graduated from University of Jaffna, Jaffna, Sri
Lanka, specializing in Computer Science. He has been working as a lecturer at the Department of Physical
Science, Vavuniya Campus of the University of Jaffna since 2008. Before attached this department he served
as an assistant lecturer at the Department of Computer Science, Faculty of Science. He is interested in Satellite
Image Processing, Numerical Computing, Scientific Computing and High Performance Algorithms.

